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Cancer Genomics 
Cancer is a genetic malady, mostly resulting from acquired mutations and epigenetic changes 
that influence gene expression. Accordingly, a major focus in cancer research is identifying 
genetic markers that can be used for precise diagnosis or therapy. Over the last half-century, 
investigators have used reductionism to discover such markers through the study of simple 
genetic changes like balanced chromosomal translocations. For example, fundamental insights 
into the nature of the bcr-abl gene translocation product resulted in the precise molecular 
classification of chronic myelogenous leukemia and recently led to the development of the 
molecularly targeted tyrosine kinase inhibitor STI571 (Gleevec; Novartis, East Hanover, NJ) for 
the treatment of this disease. Ninety percent of human cancers, however, are epithelial in origin 
and display marked aneuploidy, multiple gene amplifications and deletions, and genetic 
instability, making resulting downstream effects difficult to study with traditional methods. 
Because this complexity probably explains the clinical diversity of histologically similar tumors, a 
comprehensive understanding of the genetic alterations present in all tumors is required. 
 
The initial sequencing of the human genome, coupled with technologic advances, now make it 
possible to embrace the genetic complexity of common human cancers in a global fashion. Tools 
are currently available, or are being developed, for the identification of all changes that take 
place in cancer at the DNA, RNA, and protein levels. In particular, the use of DNA microarrays 
for the comprehensive analysis of RNA expression (expression profiling) in human tumor 
samples holds much promise (see review articles in the Chipping Forecast 1999). 
 
A major challenge with this approach, however, remains the interpretation of complex and 
biologically “noisy” data in a way that yields new knowledge. We have therefore focused on 
developing first-generation approaches to gene expression data analysis that are suitable for this 
purpose. Without such analytic tools, DNA microarray data are useless. This chapter is meant to 
serve as an introduction to fundamental concepts and techniques that have been developed in 
gene expression data mining over the last three years. It is not meant to be a comprehensive 
review of this rapidly expanding field, nor is it a step-by-step set of recipes. Most of the examples 
described come from our experience in cancer gene expression data analysis at the Whitehead / 
MIT Center for Genome Research over the last five years, but references to other works are also 
given when relevant to the discussion. 

Basic Data Analysis 
Tumors are heterogeneous mixtures of different cell types, including malignant cells with varying 
degrees of differentiation, stromal elements, blood vessels, and inflammatory cells. Two tumors 
with similar clinical stages can vary markedly in grade and in relative proportions of different 
elements (e.g., prostatic adenocarcinoma). Tumors of different grades might potentially differ in 
gene expression, and different markers can be expressed either by malignant cells or by other 
cellular elements. Because this heterogeneity can complicate the interpretation of gene 
expression studies, sample selection is an important issue that must be kept in mind when 
analyzing tumor gene expression data. 
 
Multiple sources of variation that must be understood in evaluating any microarray experiment 
include the following: (1) varying cellular composition among tumors, (2) genetic heterogeneity 
within tumors due to selection and genomic instability, (3) differences in sample preparation, (4) 
nonspecific cross-hybridization of probes, and (5) differences between individual microarrays. In 
general, biologic variation is the major source of variation in gene expression experiments. 
Increasing the sample number can help in understanding the range of biologic variation in an 
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experiment. Variation due to technical factors can be addressed by replicating sample 
preparation or array hybridization. Although most high throughput expression profiling centers 
have informal criteria for what constitutes bad data, however, there are no generally accepted 
guidelines. For approaches to microarray experimental design and the analysis of variation see 
Cheng and Wong 2001a, Tseng et al 2001, Hunter et al 2001, Kerr A. and G. Churchill 2001a,b). 
 
Basic data analysis consists of preparing datasets for higher-level analysis such as clustering or 
class prediction. This “pre-processing” of raw data can have profound effects on subsequent 
analysis and has to be done by considering the idiosyncrasies of the original gene expression 
technology platform (i.e. “chip type”). For example, cDNA microarrays generate gene ratio data 
between fluorescence intensities of experimental and control samples on a gene-by-gene basis. 
In contrast, oligonucleotide microarrays such as the Affymetrix GeneChip platform generate 
absolute expression values from a single sample. Each microarray platform generally has 
software packages that provide one “file” per sample containing one gene per “row.” These 
sample files are usually combined into multi-sample files for further analysis. Our discussion of 
data analysis starts at this point.  
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Figure 1. Methodology for basic data analysis. 
 

Raw Data Quality Control 
The quality of each microarray profile is generally assessed using measurements of overall 
microarray fluorescence intensity (e.g. mean, variance), the distribution of feature or spot 
intensities, and the proportion of total genes receiving significant signal. Any microarray that fails 
these quality control measures is generally excluded from downstream analysis. Replicate 
experiments for each sample can be used to focus on those gene measurements with the 
highest reproducibility (Lee et al 2000, Kerr et al 2001). With technologic improvements, 
however, raw data quality is presently quite good in experienced hands. Therefore, we currently 
emphasize the analysis of larger numbers of samples rather than studying fewer samples and 
more replicates. 
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Scaling 
Raw gene expression data from multiple samples (“chips”) is generally scaled to compensate for 
global differences in chip intensities and microarray to microarray variation. This can be done 
using simple multiplicative factors to match overall mean intensities among microarrays. Other 
more sophisticated methods use model-based approaches to compensate for probe-specific 
biases (Cheng and Wong 2001b). 
 

Thresholding, Filtering, & Normalization 
In some cases it may be desirable to threshold and ceiling the data, since very low and very high 
microarray fluorescence readings are less reliable and reproducible. As many clustering and 
classification algorithms work better with smaller number of genes, or are especially sensitive to 
noisy profiles, genes that show low or flat expression across multiple samples are usually filtered 
out of datasets. One of the simplest ways to do this is by using a variation filter which tests for a 
minimum fold-change (max / min) and absolute variation (max - min) among samples and 
excludes genes not passing the corresponding thresholds. The precise parameters of variation 
filters are problem-, dataset- and platform-dependent and different thresholds and stringencies in 
the variation filter may be used depending on the particular analysis. After filtering, and before 
higher-level data analysis, one may also consider normalizing each gene to a mean of 0 and 
variance of 1 across all samples. This strategy can be useful if one is interested in emphasizing 
relative rather than absolute differences in gene intensity. 

Higher-Level Data Analysis: Unsupervised & Supervised Learning 
To date, the higher-level computational analysis of gene expression data has centered on two 
approaches (Golub et al 1999). Unsupervised learning, or clustering, involves the aggregation of 
a diverse collection of data into clusters based on different features in a data set. For example, 
one could divide a group of people into clusters based on any combination of eye color, waist 
size, or height. Similarly, one can gather data about the various expressed genes in a collection 
of tumor samples and then cluster the samples as best as possible into groups based on the 
similarity of their aggregate expression profiles. Alternatively, one could cluster genes across all 
samples, to identify genes that share similar patterns of expression in varying biologic contexts. 
Such approaches have the advantage of being unbiased and allow for the identification of 
structure in a complex data set without making any a priori assumptions. However, because 
many different relationships are possible in a complex data set, the predominant structure 
uncovered by clustering may not necessarily reflect clinical or biologic distinctions of interest. 
 
In contrast, supervised learning incorporates the knowledge of class label information to make 
distinctions of interest. A training data set is used to select those features that best make a 
distinction. These features are then applied to an independent test data set to validate the ability 
of selected features to make that distinction. For example, one could select a subset of 
expressed genes that are best able to distinguish between two cancer types and build a 
computational model that uses these selected genes to sort an independent, unlabelled 
collection of those tumor types into the two groups of interest. However, supervised learning is 
dependent on accurate sample labels, which can be an issue given the limitations of 
histopathologic cancer diagnosis. Sometimes, results from unsupervised and supervised learning 
on a single data set can overlap, but this does not have to be the case. 
 
An important issue with either analytic approach is that of statistical significance of observed 
correlations. A typical microarray experiment yields expression data for thousands of genes from 
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a relatively small number of samples, and gene-class correlations, therefore, can be revealed by 
chance alone. This issue can be addressed by collecting more samples for each class studied, 
but this is often difficult with clinical cancer samples. Another approach is to perform exploratory 
data analysis on an initial data set and apply findings to an independent test set. Findings 
confirmed in this fashion are less likely a result of chance. Permutation testing, which involves 
randomly permuting class labels and determining gene-class correlations, has also been used to 
determine statistical significance (Golub et al 1999). Observed gene-class correlations that are 
stronger than those seen in permuted data are considered statistically significant. 

Unsupervised Learning: Clustering 
In unsupervised learning techniques, the structure in a data set is elucidated without using any a 
priori assumptions or knowledge as part of exploratory data analysis. The promise of these 
methods lies in their ability to provide a molecular grouping or taxonomy of samples or genes. 
One of the easiest ways to analyze data in this context is by using a clustering algorithm 
(Hartigan 1975, Gordon 1981, Duda et al 2000). Objects of interest, usually genes or samples, 
are classified into groups according the how “close” they are to each other. This is accomplished 
by using a “distance,” correlation, or “similarity” function in the clustering algorithm. For example, 
one can cluster a set of biological samples by their Euclidean distances by considering all gene 
expression values in a dataset: 
 

Distance(sample x, sample y)  =  √((Ex
gene 1 – Ey

gene 1)2 + (Ex
gene 2 – Ey

gene 2)2 +…) 
 
Here Ex

gene 1 is the expression value of gene 1 in the array corresponding to sample x. A 
clustering algorithm uses these distances to group samples or genes, and it returns an 
organization scheme to classify them (e.g. a set of clusters or a tree). 
 
Unsupervised learning approaches such as clustering can be very useful when the underlying 
structure of the data is unknown; however, they have the disadvantage, if unguided, of 
sometimes producing results that may or may not be relevant to distinctions in the data that are 
biologically relevant. Clustering often rediscovers already known subclasses or differences if 
these distinctions are predominant (e.g. estrogen receptor positive versus negative breast 
cancers). However, this approach can also discover unanticipated relationships, and clustering 
methods have been used with relative success in a number of cancer classification problems. In 
practice, it is often challenging to interpret clusters that result from unsupervised learning in 
cancer datasets.  A general methodology for clustering is shown in figure 2. 
 
Some of the first work using this approach in analyzing gene expression involved time series 
data. Genes were grouped, or clustered, according to their behavior over time, first by eye (Cho 
et al. 1998) and then by an automated hierarchical technique (Eisen et al. 1998). Hierarchical 
clustering is an unsupervised learning method useful for dividing data into natural groups by 
organizing the data into a hierarchical tree structure (“dendogram”) based upon the degree of 
similarity between either samples or genes (Eisen et al 1998). The lengths of branches in a 
dendogram reflect degree of relatedness. By examining dendogram branches, previously 
unanticipated relationships between samples and genes can be discovered in a gene expression 
dataset. Tamayo et al (1999) introduced the use of self-organizing maps (SOMs) for 
unsupervised learning in the HL-60 model of leukemia differentiation, and found that resulting 
gene clusters corresponded to pathways involved in the "differentiation" treatment of acute 
promyelocytic leukemia (APL). The Self Organizing Map (SOM) is a clustering algorithm where a 
grid of 2D nodes (clusters) is iteratively adjusted to reflect the global structure in the expression 
dataset (Tamayo et al 1999). With the SOM, the geometry of the grid is randomly chosen (e.g., a 
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3 x 2 grid) and mapped to the k-dimensional gene expression space. The mapping is then 
iteratively adjusted to reflect the natural structure of the data. Resulting clusters are organized in 
a 2D grid where similar clusters lie near to each other and provide an automatic “executive” 
summary of the dataset. 
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Figure 2. General methodology for clustering gene expression data. 
 
Golub et al. used a 2-cluster SOM to automatically cluster an initial set of 38 leukemia samples 
into two classes based on the expression pattern of 6817 genes (figure 3).  They then compared 
these SOM clusters to the known lymphoblastic vs myeloid leukemia (AML / ALL) distinction. As 
demonstrated, the two SOM clusters closely paralleled this morphological distinction with the first 
cluster containing mostly ALLs (24 out of 25 samples) and the second containing mostly AMLs 
(10 out of 13 samples). Thus, the clustering algorithm was effective but not perfect at separating 
samples into biologically meaningful groups.   
 

2-cluster SOM

ALL 

AML 

2-cluster SOM

ALL 

AML  
 

Figure 3. Clustering of Leukemia samples into two groups using a 2X1 SOM. 
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Golub et al also searched for further sub-classifications of the leukemia samples by constructing 
a 4-class (2x2) SOM (figure 4). The clustering algorithm was successful at separating the 
samples into more refined groups reflecting another important biological distinction: different ALL 
cell lineages (B- and T-Cell). 
 

 4-cluster SOM
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Figure 4. Clustering of Leukemia samples into 4 groups using a 4x1 SOM. 

 
Hierarchical clustering (Eisen et al 1998) was also applied to the same dataset (figure 5). Again, 
this clustering approach revealed three major leukemia sub-groups, suggesting that robust gene 
expression differences between different tumor sub-types can be discovered using unsupervised 
learning. 
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Figure 5. Hierarchical clustering of Leukemia Samples based on the expression of 
the 330 most varying genes. 

 
Similar studies have recently been described for the sub-classification of various tumor types 
including breast cancer (Perou et al. 1999; Perou et al. 2000), lung cancer (Bhattacharjee et al 
2001) and melanoma (Bittner et al. 2000). 
 
Clustering has yielded results that are interpretable in the context of a priori knowledge (i.e. 
known leukemia sub-classes). However, in the absence of such knowledge the biological 
interpretation of clustering results remains a challenge. Often clustering results are not in 
themselves the desired results but the starting point for further interpretation or experimentation.  

7 



An area of active research, moreover, involves the statistical interpretation of clustering results. 
Often asked questions include what constitutes a cluster and what is the statistical significance of 
a given clustering result? There are presently no good general answers for these important 
questions, although some groups have proposed the implementation of formal measures of 
clustering significance such as the gap statistic (Tibshirani 2001). 

Supervised Learning: Prediction 
Supervised learning or class prediction methods represents another important paradigm in 
molecular classification and pattern recognition. The simplest analysis involves selecting the 
features (genes) most correlated with a phenotypic distinction of interest.  These features or 
“marker genes” are biologically interesting in themselves but they can also be used as the input 
of a classification algorithm that uses existing “labeled” samples to build a model to predict the 
labels for future samples.  For example, marker genes in a cancer dataset can be fed into a 
computational classifier to distinguish cancer types on the basis of site / cell of origin or clinical 
outcome. This powerful approach, supervised machine learning or class prediction (Duda et al 
2000, Fukunaga 1990), involves data collection, feature selection, model building, validation, and 
model testing on an independent dataset Supervised learning classifiers can achieve highly 
accurate molecular classification if enough samples are available to “train” a classifier. In 
general, pairwise comparisons are less challenging than multi-class distinctions. In every case 
the comparison of a supervised classifier has to be done against the best generally accepted 
clinical classification method such as standard histopathology. In the next few sections we will 
review in more detail the steps necessary to select and validate gene markers and to build 
classifiers. 

Selecting and Validating Gene Markers  
Genes correlated with a binary class distinction, for example a morphological or clinical 
phenotype, can directly be identified and selected by using a “distance” metric, for example: 

• Signal to noise ratio = (µA - µB) / (σA + σB)        [µ and σ are the means and std. dev. per class] 
• t-test statistic = (µA - µB) / √(σ2

A + σ2
B)              [µ and σ are the means and std. dev. per class] 

• Pearson correlation coefficient 
 
For example, the figure below shows the top 10 genes that differentiate normal kidney from renal 
carcinoma as selected from a microarray profiling experiment using the signal to noise (S2N) 
ratio score: 
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Number S2N Score Accession Description
1 2.82 J03507 C7 Complement component 7
2 2.21 HG3431-HT3616 Decorin, Alt . Splice 1
3 2.08 Z30644 GB DEF = Chloride channel (putative) 
4 2.07 J05257 DPEP1 Dipeptidase 1 (renal)
5 1.98 U27333 Alpha-1,3 fucosyltransferase 6 (FCT3A) 
6 1.81 X56494 PKM2 Pyruvate kinase, muscle
7 1.78 X59798 CCND1 Cyclin D1 
8 1.67 M22898 TP53 Tumor protein p53 
9 1.51 D50855 CASR Calcium-sensing receptor

10 1.47 HG662-HT662 Epstein-Barr Virus Small Rna-Associated Protein

Normal 
Kidney

Renal 
Carcinoma
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The original dataset was created by joining twelve microarray datasets, six from normal kidney 
and six from renal cell carcinoma samples. Markers were selected by computing the signal to 
noise score: the mean and standard deviation of the expression values are computed in each 
class and then the ratio of the difference of the means is divided by the sum of the standard 
deviations. For example, this calculation as applied to the profile of p53 shown below produces 
the following: 

Signal to noise ratio = (µcancer - µnormal)/ (σcancer + σnormal) = 1.67 
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As can be seen, this gene acts as a marker of the “cancer” phenotype by being expressed on 
average at higher level in cancer samples compared with normal ones. It is important to notice 
that the difference in absolute expression value may not always be large. In this example p53 is 
a marker but in general displays low values of expression. 
 
This basic procedure of selecting differentially expressed genes is useful in two common 
analysis situations. The first is associated with selecting statistically significant markers for more 
detailed follow up biological study (e.g. to identify genes that are differentially expressed in two 
different cancer types). Selected genes can then be subject to a literature search or to validation 
using other experimental assays (e.g. RT-PCR, immunohistochemistry, etc.). The second relates 
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to the problem of feature selection: finding genes to feed into a supervised learning classifier. In 
this case one is interested in selecting the subset of genes most likely to be useful in 
discriminating phenotypes of interest, either as single markers or in combination with others. This 
task is better viewed as a pre-processing step in a classification methodology. Gene selection is 
required, in part, because many supervised learning algorithms perform sub-optimally with 
thousands of input variables and require some type of dimensionality reduction. A general 
methodology for supervised marker selection and classification is shown in figure 6. The training 
of classifiers will be discussed in detail in a subsequent section. 
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Figure 6. Methodology for marker selection. 

  

Permutation Tests 
Once marker genes have been selected, one might want to decide how many of them to 
consider for further study. This is a difficult problem because typically there will be a gradual 
decrease in the score or correlations in such way that there is no well defined boundary between 
markers and non-markers. In most situations the analysis will concentrate on the very top 
markers and exclude the rest. However, this problem can be addressed more formally by using 
permutation testing. This method (Golub et al 1999, Slonim et al 2000) attempts to solve the 
marker selection problem by comparing the actual distribution of marker scores to a reference 
empirical distribution of scores obtained by permuting the phenotype class labels. The markers 
are viewed as close matches or “neighbors” of an ideal marker separating the classes. A 
histogram of scores for each of the ranked marker genes, corresponding to each permutation 
(neighborhood), is kept and the significance of an actual gene marker is obtained by finding the 
appropriate percentile in the histogram of the correspondingly ranked marker (i.e. the one with 
the same rank, e.g. best match, second best match etc.). There are several advantages to 
performing a permutation test: (1) the method does not assume a particular functional form for 
the distribution or correlation structure of genes; (2) it is performed on the entire distribution of 
marker genes and therefore takes into account the gene-to-gene correlation structure; and (3) it 
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is a simple, intuitive approach that provides higher statistical power. In detail, the permutation 
test procedure for a given comparison of interest (e.g. markers high in class 0 and low in class 1) 
is as follows: 
 
� Generate signal-to-noise (µclass 0 - µclass 1)/(σ class 0 + σclass 1) or other type of scores (t-test, 

Pearson etc.) for all genes being considered using the actual class labels (phenotype) and sort 
them accordingly. The best match (k=1) is the gene “closer” or more correlated to the phenotype 
using the signal to noise as a correlation function. In fact one can imagine the reciprocal of the 
signal to noise as a “distance” between the “phenotype” and each gene as shown in figure 7.  

 
� Generate 500 or more random permutations of the class labels (phenotype). For each case of 

randomized class labels generate signal-to-noise scores and sort genes accordingly. 
 
� Build a histogram of signal to noise scores for each value of k. For example one for all the 500 top 

markers (k=1), another one for the 500 second best (k=2) etc. These histograms represent a 
reference distribution for the kth marker and for a given value of k different genes contribute to it. 
Notice that the correlation structure of the data is preserved by this procedure. For each value of k, 
determine different percentiles (1%, 5%, 50% etc.) of the corresponding histogram.  

 
� Compare the actual signal to noise scores with the different significance levels obtained for the 

histograms of permuted class labels for each value of k. This test helps to assess the statistical 
significance of gene markers in terms of the distribution of class-gene scores using permuted 
labels. 
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Figure 7. Permutation test based assessment of significance for gene markers. 

 
For example, normal kidney vs renal carcinoma marker selection and permutation testing for 
each of the selected markers generates the following list: 
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Number Class S2N Score Perm 1% Perm 5% Median Gene Description
1 Normal 2.82 2.48 1.97 1.37 J03507 C7 Complement component 7
2 Normal 2.21 1.89 1.69 1.22 HG3431-HT3616 Decorin, Alt. Splice 1
3 Normal 2.08 1.83 1.56 1.12 Z30644 GB DEF = Chloride channel (putative) 
4 Normal 2.07 1.76 1.47 1.07 J05257 DPEP1 Dipeptidase 1 (renal)
5 Normal 1.98 1.66 1.41 1.05 U27333 Alpha-1,3 fucosyltransferase 6 (FCT3A) 
6 Carcinoma 1.81 2.38 1.97 1.39 X56494 PKM2 Pyruvate kinase, muscle
7 Carcinoma 1.78 1.99 1.74 1.21 X59798 CCND1 Cyclin D1 
8 Carcinoma 1.67 1.82 1.58 1.13 M22898 TP53 Tumor protein p53 (Li-Fraumeni syndrome)
9 Carcinoma 1.51 1.72 1.48 1.07 D50855 CASR Calcium-sensing receptor 

10 Carcinoma 1.47 1.66 1.43 1.04 HG662-HT662 Epstein-Barr Virus Small Rna-Associated Protein
 
The class column represents the class for which the markers are high (low in the other class). 
The S2N score is the signal to noise of each marker. The Perm 1%, 5% and 50% columns 
represent the percentiles in the histograms of signal to noise scores for permuted labels, for a 
given value of the rank order. These 10 markers shown all have signal to noise scores better 
than 5% of the random permutations (p <= 0.05). 
 
Permutation tests assess the significance of gene markers in terms of class-gene correlations. If 
a group of genes fails to pass permutation testing, however, that by itself does not necessarily 
imply that it cannot be used to build an effective classifier (Huberty 1994, Kearns and Vazirani 
1997). In subtle phenotypes distinctions, for example, the top marker genes are often “weak” and 
may not show overwhelming statistical significance. This often results from a gene being 
expressed only in a subset of samples in a given class. However, such genes can still be 
effective when used in combination as input to a classifier. Examples of this phenomenon can be 
found in subsequent sections. 
  
Other marker selection methods have been introduced in the literature. For example the SAM 
method of Tusher et al 2001 is similar to the one presented above but includes a user-adjustable 
threshold to provide estimates of the false discovery rate. Dudoit et al 2001 have introduced a 
method based on step-down adjusted p-values using Westfall and Young’s approach in the 
context of replicated cDNA experiments. Ideker et al 2000 used generalized likelihood tests to 
assess the statistical significance of differentially expressed genes in the context of two channel 
cDNA microarrays. Newton et al 2001 and Baldi and Long 2001 used empirical Bayes 
hierarchical models to assess significance of differential expression. Lee et al 2000 combined the 
data from replicates to estimate posterior probabilities and identify differentially expressed genes. 
No systematic comparison of the error rates and statistical power of all these different methods 
have been published yet. Methods have also been proposed to combine both resampling and 
explicit control of the false discover rate (Yekuteli and Benjamini 1999) such as the stepwise 
permutation-based procedures of Korn et al 2002. 
 
A logical extension of marker selection is pattern discovery, where one tries to find sub-patterns, 
i.e. patterns not necessarily involving all of the samples but that occur often and may represent 
groups of co-regulated or correlated genes. Califano et al (1999) introduced a pattern discovery 
algorithm (SPLASH) to expose more complex gene correlations. They extracted statistically 
significant subpatterns from expression array data using a geometric hashing algorithm. 
Although their statistical models were simplistic, their work represented one of the first analytic 
evaluations of sub-pattern significance in that context. Other attempts to elucidate complex gene-
gene correlations or global correlation structure have used principal component analysis (PCA) 
(Bittner et al. 2000, Pomeroy et al 2002), singular value decomposition (Alter et al. 2000), 
biclustering (Cheng and Church 2000), and Plaid (Lazzeroni and Owen 2000). Hastie and 
associates introduced “gene shaving” as a global approach based on PCA to systematically 
expose coherent patterns of co-regulation in gene expression data (Hastie et al. 2000).  All these 
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methods are promising but face the same challenge in terms of how to effectively separate 
biologically relevant signals from the noise. 

Class Prediction 
A general methodology for class prediction under the supervised learning paradigm is shown in 
figure 11. One starts by putting together the relevant samples into a single dataset, scaling and 
pre-processing the dataset and by defining the target phenotype class based on morphology, 
tumor type or treatment outcome clinical information. The dataset is split in train and test subsets 
if enough samples are available. If not enough samples are available, one can perform a leave-
one out cross validation in which one samples is held, a predictor is trained on the remaining 
samples, the left out sample is classified by this predictor, and the process is repeated iteratively. 
Once a proper training set has been defined, a marker selection methodology is applied. This 
step is in general useful and facilitates the training of most classification algorithms, although 
some classifiers such as Naïve Bayes or Support Vector Machines can deal with thousands of 
variables effectively (Ramaswamy 2001a, Weston et al 2001). Feature selection is generally 
useful to facilitate subsequent validation of selected genes that are particularly informative in 
classification. Once markers have been selected, a classifier can be built using classification 
algorithms such as (Duda et al 2000, Fukunaga 1990, Ripley 1996): 
 
� Linear or Quadratic Discriminants 
� k-Nearest Neighbors 
� Weighted Voting 
� Naïve Bayes  
� Neural Networks  
� Support Vector Machines 
� Decision Trees 

 
If the model has internal parameters that require tuning, this is done typically when training the 
predictor. In this way several models are built using different number of marker genes and the 
final chosen model is the one that minimizes the total error in cross-validation. This model can 
then be validated on an independent test set. Detailed model-to-model performance 
comparisons require predictions with different instantiations of the train and test datasets and 
have to be made carefully as suggested by Salzberg (1999). 
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Figure 11. Methodology for Supervised Learning. 

 

Statistical Significance of a Supervised Classifier.  
The statistical significance of a supervised classifier can be evaluated in several ways. One of 
the simplest is to compute a Fisher exact test of the classification confusion matrix or use the 
proportional chance criterion to compare the observed with the expected classification accuracy 
for a random predictor (Huberty 1994). A more sophisticated empirical approach, sometimes 
useful for weak classifiers or when there are not enough samples to create an independent test 
set and when cross-validation must be used, is the class label permutation (Fisher 1935, 
Lehman 1986, Good 1994). The phenotype (sample) labels are randomly permuted 1000 or 
more times and in each instance predictive models are built and tested. Once this is done one 
selects the best error rate for each of these 1000 random predictors and makes a histogram of 
these error rates. The error rate from the actual predictive model is then compared to this 
histogram to determine the statistical significance of this prediction (see figure 12).  
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Figure 12. Methodology to assess the statistical significance of a classifier. 

 
 
Figure 13 below shows the application of this permutation test for the k-nearest neighbor 
treatment outcome predictor in Pomeroy et al 2002. This is a cross-validation model built on 60 
medullobalstoma samples capable of distinguishing patients with “good” and “poor” prognosis on 
the basis of primary tumor gene expression profiles. An optimal model was defined using the 
following parameters:  
 

Number of neighbors (k): 3, 5 
Number of genes (ng): 1,2,3,4,5,6,7,8,9,10,15,25,50,100 

 
Models were created using the actual treatment outcome labels and also for 1000 random 
permutation of those labels (keeping the gene expression data the same). The best predictive 
model used k=5 and ng=8, and correctly predicted 47 out of 60 cases as being “good” or “poor” 
prognosis. Random class label permutation showed that there were 9 models with better 
performance (lower error rates) than the actual model. Based on this result, the statistical 
significance of this medulloblastoma outcome prediction study was p = 0.009 (9/1000). When 
enough samples are available to produce independent train and test datasets the proportional 
chance criterion is usually a sufficient measure of statistical significance (Huberty 1994). 
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Figure 13. Results of the permutation test for a k-nearest neighbor Medulloblastoma 
treatment outcome predictor. 

Pairwise Classification: Classifying Leukemia Subtypes 
We next review microarray-based leukemia sub-classification (Golub et al 1999, Slonim et al 
2000) as an example of a binary molecular classification problem. Acute leukemias arise from 
different precursor cells: lymphoid (acute lymphoblastic leukemia (ALL)) and myeloid (acute 
myeloid leukemia (AML)). This distinction is critical for effective Leukemia treatment planning, 
and is currently done by assimilation of diverse information including morphological, cytogenetic, 
histochemical, and immunophenotypic analysis by an expert physician.  Our initial analysis 
employed a set of 27 ALL and 13 AML samples. A permutation test of the gene markers 
revealed a striking excess density of genes correlated with the class distinction. We decided to 
employ a weighted voting classifier based on the top 50 genes. Sets of classifiers were first 
constructed in cross-validation experiments using the 40 leukemia samples. In one case, no 
prediction was made because the confidence score fell below a predetermined threshold. For the 
remaining 39 cases, the prediction accuracy was 100%.  While they initially chose 50 genes for 
the prediction algorithm, they also found that classifiers involving as few as 7 genes proved to be 
100% accurate in the ALL/AML distinction.  Interestingly, however, among the top 50 genes, no 
single gene yielded a perfect predictor.  Correct classification thus requires multi-gene predictors.  
Other classification algorithms such as Naïve Bayes, k-nearest neighbors and Support Vector 
Machines produce similar results (Mukherjee, et al 1999). 
 
The original weighted voting classifier was also tested on an independent collection of 34 AML 
and ALL samples. In 3 cases, the confidence score fell below the threshold for prediction but the 
classifier made predictions in the remaining 30 cases, and 29 out of 30 were correct. The single 
error had the lowest confidence score of the samples, just barely passing the threshold. Overall, 
69 of 70 samples were correctly classified either in cross-validation or using the independent test 
set (98.6%).  Other algorithms also performed fairly well on the independent test set with the 
Support Vector Machine model producing 100% accuracy. 
 
The marker genes, shown in figure 14 below, are highly instructive.  Some, including CD22, 
CD11c, CD33 and CD79a, encode cell surface proteins for which monoclonal antibodies have 
been previously demonstrated to be useful in distinguishing lymphoid from myeloid lineage cells.  
Others provide new markers of acute leukemia subtype.  For example, the leptin receptor, 
originally identified as a cell surface receptor in adipocytes, but showed high relative expression 
in AML cells.  The leptin receptor has been demonstrated to have anti-apoptotic function in 
hematopoietic cells. Some of the markers are typical markers of hematopoetic lineage but others 
have biological function relevant to the cancer.  For example many of the genes encode proteins 
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critical for S-phase cell cycle progression (Cyclin D3, Op18 and MCM3), chromatin remodeling 
(RbAp48), transcription (SNF2b and TFIIEß), or cell adhesion (zyxin and integrin alpha X) or are 
known oncogenes (c-MYB, E2A, EWSR1 and HOXA9).  
 

 

 
Figure 14. Top markers of the ALL/AML leukemia subtype distinction. The 
micrographs on top show the similar morphology characteristic of these cells. 

 

Predicting Treatment Outcome:  Lymphoma  
Supervised learning classifiers are also well suited to predict differential treatment outcome 
between histologically similar tumors. Here we review the results of Lymphoma treatment 
outcome prediction model of Shipp et al 2001. Diffuse Large B-Cell Lymphomas (DLBCL) are the 
most common lymphoid neoplasm and it accounts for up to 40% of adult (non-Hodgkin’s) 
lymphomas.  Using existing chemotherapeutic regimens only a subset of DLBCL patients is 
cured. Clinical prognostic models such as the International Prognostic Index (IPI) are used to 
identify different DLBCL risks groups. The clinical factors used by the IPI (age, performance 
status, stage, number of extranodal sites, and serum LDH) are potentially surrogate markers for 
the true molecular heterogeneity of the disease and provide a useful but highly imperfect model 
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for the identification of high-risk patients. Few molecular markers are, however, broadly useful for 
lymphoma risk stratification. 
 
Our group studied 58 DLBCL patients uniformly treated with standard CHOP chemotherapy, 
where long-term clinical follow-up was available (Shipp et al (2001)). These patients fell into two 
groups including those with cured disease and those with fatal / refractory disease. They used 
supervised learning to determine differential treatment outcome on the basis of primary tumor 
gene expression profiles. 
 
Top marker genes for the cured vs. failure distinction were selected using the signal to noise 
ratio (figure 17). 
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Figure 17. Top markers of Lymphoma treatment outcome. 

 
We developed a supervised classifier using a Weighted Voting algorithm (Slonim et al 2000) and 
used cross-validation testing to assess the performance of the classifier. Models containing 
between 8 and 16 genes yielded statistically significant predictions with the highest accuracy 
obtained using 13 genes. This classifier separated the 58 patients into 2 groups according to the 
predicted class:  predicted to be cured or predicted to have fatal / refractory disease based on 
the gene expression profiles of those 13 genes. A Kaplan-Meier plot of these results is shown in 
Figure 18 (p = 0.0013 using a standard log-rank test). 
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Figure 18. Kaplan-Meier survival plot for the treatment outcome predicted groups. 

 
Patients predicted by the classifier to be cured had dramatically improved long-term survival 
compared to those predicted to have fatal/refractory disease. The 5-year OS is 70% vs. 12%, 
with nominal log rank P-value of 0.00004.  As part of this study, we also built other supervised 
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classification algorithms and obtained similar results. The fact that treatment outcome can be 
predicted solely based on gene expression patterns indicates the existence, at diagnosis, of a 
gene expression signature of outcome in DLBCL.  

Multi-Class Classification: Classifying Multiple Tumor Types 
Multiclass classification problems are inherently more difficult than pairwise comparisons. In this 
section we review our efforts to perform multiclass tumor classification (Ramaswamy et al 2001, 
Yeang et al 2001). We explored the general feasibility of molecular cancer diagnosis of common 
human tumors solely on the basis of tumor gene expression profiles. We first created a gene 
expression database containing the expression profiles of 218 tumor samples representing 14 
common human cancer classes and devised a multiclass classification method. Our analytical 
scheme is depicted in figure 15. First, The multiclass problem was divided into a series of 14 
one-versus-all (OVA) pairwise comparisons. Each test sample was presented sequentially to 
these 14 pairwise classifiers, each of which either claimed or rejected that sample as belonging 
to a single class. This method resulted in 14 separate OVA classifications per sample, each with 
an associated confidence. Each test sample was then assigned to the class with the highest 
OVA classifier confidence. In mathematical terms: given m classes and m trained classifiers, a 
new sample takes the class of the classifier with the largest real valued output class = arg 

maxi=1…m fi, where fI  is th
corresponds to a test sam
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SVM algorithm was used recently for pairwise gene expression-based classification (Mukherjee  
et al 1999, Brown et al 2000, Weston et al 2001) and has a strong theoretical foundation (Vapnik 
1996, Evgeniou et al 2000). This algorithm considers all profiled genes, to create descriptions of 
samples in this high-dimensional space, and then defines a hyperplane that best separates 
samples from two classes (Figure 15). The position of an unknown sample relative to the 
hyperplane determines its membership in one or the other class (e.g., ‘‘breast cancer’’ vs. ‘‘not 
breast cancer’’). Fourteen separate SVM-based OVA classifiers classify each sample. The 
confidence of each OVA SVM prediction is based on the distance of the test sample to each 
hyperplane, with a value of 0 indicating that a sample falls directly on a hyperplane. The overall 
multiclass classifier assigns a sample to the class with the highest confidence among the 14 
pairwise OVA analyses. 
 
The accuracy of this multiclass SVM-based classifier in cancer diagnosis was first evaluated by 
cross-validation in a set of 144 training samples. This method involves randomly withholding 1 of 
the 144 primary tumor samples, building a predictor based only on the remaining samples, then 
predicting the class of the withheld sample. The process is repeated for each sample, and the 
cumulative error rate is calculated. As shown in Figure 16, the majority (80%) of the 144 calls 
were high confidence (defined as confidence >= 0) and these had an accuracy of 90%, using the 
patient’s clinical diagnosis as the ‘‘gold standard.’’ The remaining 20% of the tumors had low 
confidence calls (confidence < 0), and these predictions had an accuracy of 28%. Overall, the 
multiclass prediction corresponded to the correct assignment for 78% of the tumors. For half of 
the errors, the correct classification corresponded to the second- or third-most confident OVA 
prediction. 
 
These results were confirmed by training the multiclass SVM classifier on the entire set of 144 
samples and applying this classifier without further modification to an independent test set of 54 
tumor samples. Overall prediction accuracy on this test set was 78%, a result similar to cross-
validation accuracy and highly statistically significant when compared with class-proportional 
random prediction (P < 1016). The majority of these 54 predictions (78%) were high confidence, 
with an accuracy of 83%, whereas low-confidence calls were made on the remaining 22% of 
tumors with an accuracy of 58%. Again for one-half of the errors, the correct classification 
corresponded to the second-or third-best prediction. Of note, classification of 100 random splits 
of a combined training and test dataset gave similar results, confirming the stability of prediction 
for this collection of samples. 
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Figure 16. Multiclass classification results. (a) Results of multiclass classification 
by using cross-validation on a training set (144 primary tumors) and independent 
testing with 2 test sets: Test (54 tumors; 46 primary and 8 metastatic) and PD (20 
poorly differentiated tumors; 14 primary and 6 metastatic). (b) Scatter plot 
showing SVM/OVA classifier confidence as a function of correct calls (blue) or 
errors (red) for Training, Test, and PD samples. A, accuracy of prediction; %, 
percentage of total sample number. 



 
We next focused on the 28 samples that yielded low-confidence predictions in cross-validation, 
as the multiclass predictor generally misclassifies these samples. We found that a large number 
(17 of 28) were moderately or poorly differentiated (high-grade) carcinomas. It can be difficult to 
classify such tumors with traditional methods because they often lack the characteristic 
morphological hallmarks of the organ from which they arise. It has been assumed that these 
tumors are nonetheless fundamentally molecularly similar to their better-differentiated 
counterparts, apart from a few differences that might account for their clinically aggressive 
nature. To directly test this hypothesis, the multiclass classifier was trained on the original 144-
tumor dataset, and then applied to an independent set of poorly differentiated tumors. Gene 
expression data were collected from 20 poorly differentiated adenocarcinomas (14 primary and 6 
metastatic), representing 5 tumor types: breast, lung, colon, ovary, and uterus. The technical 
quality of this dataset was indistinguishable from the other samples in the study. However, these 
tumors could not be accurately classified according to their tissues of origin, compared with the 
high overall accuracy seen with lower-grade tumors. Overall, only 6 / 20 samples (30%) were 
correctly classified, which is statistically no better than what one would expect by chance alone 
(P = 0.38). Because the classifier relies on the expression of thousands of similarly weighted 
tissue-specific molecular markers to determine the class of a tumor, these findings indicate that 
poorly differentiated tumors do not simply lack a few key markers of differentiation, but rather 
have fundamentally distinct gene expression patterns. 
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Dimensionality Reduction and Projection: Principal Components Analysis 
Datasets with a large number of genes are in general difficult to visualize. Principal Component 
Analysis (PCA) is a dimensionality reduction method that has been used to visualize complex 
gene expression datasets in two and three-dimensional plots (Mardia et al 1979, Yeung and 
Ruzzo 2001, Bittner et al. 2000, Pomeroy et al 2002). In this approach one finds standardized 
linear combinations of variables, the “principal components,’ which are orthogonal and explain all 
of the variance in the original dataset. A typical method to obtain a simple projection (multi-
dimensional scaling) of the dataset is to plot the top 2 or 3 principal components, which may 
account for a significant fraction of the variance, in a scatter plot. One can take this approach in a 
completely unsupervised manner, e.g. by using all genes that pass a data “pre-processing” step, 
or in a supervised way by projecting only the top marker genes of a phenotype of interest. 
 
For example, principle component analysis can be applied to leukemia gene expression data. 
The initial set of genes is first subject to a variation filter resulting in a dataset with 612 genes 
that displayed the greatest variation across samples. In this case the PCA method is used in an 
unsupervised way. Figure 19 shows a 3D plot of these leukemia samples projected in the space 
of the top 3 principal components. This plot reveals the dominant structure of the dataset 
corresponding to the known morphological subclasses of leukemia, clearly separating ALL from 
the AML samples and separating the T-ALL from B-ALL samples. 
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Figure 19.  Plot of the top 3 principal components for the 612 most highly varying 
genes in the Leukemia subtypes dataset. The analysis is unsupervised and reveals 
the dominant structure of the dataset corresponding to the morphological 
subclasses. 

Conclusions and Analytical Challenges in Molecular Classification 
The analysis of cancer gene expression data is still in its infancy despite impressive recent 
progress. As expression profiling technologies mature, the identification of statistically significant 
patterns from relatively sparse and noisy data sets remains a major challenge. Although 
sophisticated data-mining techniques are already being used to analyze expression data, most of 
these techniques achieve robust performance with a large number of samples and a small 
number of variables (Friedman 1994). However, gene expression data sets generally contain 
small numbers of samples, many profiled genes, and multiple sources of variation. Future 
advances will require adapting analytic and statistical techniques to this type of data. In addition, 
most published work has analyzed a relatively small number of samples and most studies await 
independent confirmation. 
 
A first generation of gene expression analysis methods has been used successfully in a variety 
of clustering and classification settings.  For example, relatively successful models have been 
used to classify a variety of cancer types. Some examples include: 
 
� Leukemias (Golub et al 1999, Yeoh et al 2002, Armstrong et al 2001). 
� Lymphomas (Alizadeh et al 1999, Alizadeh et al 2000, Shipp et al 2001, Li et al 2002). 
� Ewing’s Sarcoma (Lessnick et al 2001). 
� Brain cancer (Pomeroy et al 2002). 
� Breast cancer (Porou et al 1999, Perou et al 2000, Sorlie et al 2001). 
� Lung cancer (Bhattacharjee et al 2001, Garber et al 2001). 
� Prostate cancer (Singh et al 2002, Welsh et al 2001a). 
� Colon cancer (Alon et al 1999). 
� Gastrointestinal tumors (Allander et al 2001). 
� Ovarian cancer (Welsh et al 2001b). 
� Melanoma (Bittner et al 2000). 
� Multiple tumors (Ramaswamy et al 2001a, Su et al 2001). 
� Soft tissue tumors (Nielsen et al 2002). 
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These studies have undoubtedly contributed to improve our understanding of cancer 
classification at the molecular level. However, in most cases the complexity of the problem had 
to be simplified by treating genes as independent variables. While some studies expose co-
regulation, they may not focus on the more complex patterns of interaction inherent in all 
biological processes and may further ignore the diversity of biological mechanisms within a 
phenotype. For example, in marker selection, one distinguishes between two phenotypes by 
determining which genes are up-regulated in one phenotype and down-regulated in the other. 
While this is a straightforward pattern to discover, we know it does not represent the true nature 
of genes' interactions. For example, it does not take into account 1) distinct mechanisms that 
may yield the same biological state, or 2) sub-phenotypes and taxonomies that may be as yet 
unidentified. Even when clustering and classification methods are shown to be successful, it is 
often unclear exactly what the significant features or discovered patterns mean. Extracting more 
refined knowledge from the profiles and patterns is a serious scientific bottleneck. 
 
Another important area relates to the integration of datasets generated in different laboratories 
using different profiling technologies. Many human cancer studies involve valuable or rare clinical 
specimens and are difficult to repeat. Ideally, one should be able to compare expression data 
sets obtained in any center, at any time, using any platform. However, this goal remains 
unrealized. Spotted array data is usually reported as ratios between experimental and control 
expression values and cannot be easily compared with oligonucleotide microarray data. Multiple 
expression profiling technologies require more sophisticated methods for data comparison and 
integration. 
 
Despite initial sequencing of the human genome, we still have only a rudimentary knowledge of 
the physiologic roles of most genes. This represents a significant bottleneck in linking gene 
expression profiles to molecular mechanisms of transformation. There is a need for integrated 
databases, with complete annotation, comprehensive gene descriptions, and links to relevant 
genetic and proteomic information. In addition, as expression studies are performed in various 
species, integration of this information should prove as illuminating as inter-species gene 
sequence comparisons. Such databases will allow for an understanding of gene expression in 
the context of all other available biologic information. Although a number of commercial sources 
have started to create such databases, there is much room for improvement. 
 
The challenges described above concern methodological and scientific issues. However, no 
computational approach is useful if it is not embodied in a set of software tools that scientists in 
the community can use. There are some academic codes available by web download, but often 
they are not integrated and do not interoperate in a user-friendly environment. Available 
commercial codes are generally not current with the latest sophisticated techniques and often 
focus more on visualization of expression data than analysis and knowledge discovery. Since 
analysis of gene expression data remains a significant limitation in cancer genomics, the 
development of freely available and transparent analytic software continues to remain a major 
challenge. 

Acknowledgements 
We are indebted to members of the Cancer Genomics Group, Whitehead / MIT Center for 
Genome Research and the Golub Laboratory, Dana-Farber Cancer Institute / Harvard Medical 
School for many valuable and stimulating discussions. 

23 



References 

Alizadeh A, Eisen M, Davis RE, Ma C, Sabet H, Tran T, Powell JI, Yang L, Marti GE, Moore DT, 
Hudson Jr. JR, Chan WC, Greiner T, Weisenburger D, Armitage JO, Lossos I, Levy R, Botstein 
D, Brown PO, Staudt LM. (1999). The Lymphochip: A specialized cDNA microarray for the 
genomic-scale analysis of gene expression in normal and malignant lymphocytes. Cold Spring 
Harbor Symposia on Quantitative Biology. 1999; 64(): 71-78. 

Alizadeh, A.A., Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S., Rosenwald, A., Boldrick, J.C., 
Sabet, H., Tran, T., Yu, X., Powell, J.I., Yang, L., Marti, G.E., Moore, T., Hudson, J., Jr., Lu, L., 
Lewis, D.B., Tibshirani, R., Sherlock, G., Chan, W.C., Greiner, T.C., Weisenburger, D.D., 
Armitage, J.O., Warnke, R., Staudt, L.M., et al. (2000) Distinct types of diffuse large B-cell 
lymphoma identified by gene expression profiling. Nature 403:503–511. 

Allander, Susanne V., Nina N. Nupponen, Markus Ringne´r, Galen Hostetter, Greg W. Maher, 
Natalie Goldberger, Yidong Chen, John Carpten, Abdel G. Elkahloun, and Paul S. Meltzer 
(2001). Gastrointestinal Stromal Tumors with KIT Mutations Exhibit a Remarkably Homogeneous 
Gene Expression Profile. Cancer Research 61, 8624–8628, December 15, 2001. 

Alon, U., N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A. J. Levine, Broad 
patterns of gene expression revealed by clustering of tumor and normal colon tissues probed by 
oligonucleotide arrays. Proc. Natl. Acad. Sci. USA, Vol. 96, Issue 12, 6745-6750, June 8, 1999. 

Alter, O., Brown, P.O., Botstein, D. (2000) Singular value decomposition for genome-wide 
expression data processing and modeling. Proc. Natl. Acad. Sci. USA 97:10101–10106. 

Armstrong, S.A., Staunton, J.E., Silverman, L.B., Pieters, R., den Boer, M.L., Minden, M.D., 
Sallan, S.E., Lander, E.S., Golub, T.R., Korsmeyer, S.J. (2001) MLL translocations specify a 
distinct gene expression profile that distinguishes a unique leukemia. Nature Genetics 30, pp 41 
- 47 (2002) 

Baldi, P. Long, A.D. (2001) A Bayesian framework for the analysis of microarray expression data: 
Regularized t-test and statistical inferences of gene changes. Bioinformatics 17:509–519. 

Bhattacharjee, A., Richards, W.G., Staunton, J., Li, C., Monti, S., Vasa, P., Ladd, C., Beheshti, 
J., Bueno, R., Gillette, M., Loda, M., Weber, G., Mark, E.J., Lander, E.S., Wong, W., Johnson, 
B.E., Golub, T.R., Sugarbaker, D.J., Meyerson, M. (2001) Classification of human lung 
carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc. 
Natl. Acad. Sci. USA 98:13790–13795. 

Bittner, M., Meltzer, P., Chen, Y., Jiang, Y., Seftor, E., Hendrix, M., Radmacher, M., Simon, R., 
Yakhini, Z., Ben-Dor, A., Sampas, N., Dougherty, E., Wang, E., Marincola, F., Gooden, C., 
Lueders, J., Glatfelter, A., Pollock, P., Carpten, J., Gillanders, E., Leja, D., Dietrich, K., Beaudry, 
C., Berens, M., Alberts, D., Sondak, V. (2000) Molecular classification of cutaneous malignant 
melanoma by gene expression profiling. Nature 406:536–540. 

Brown, M.P., Grundy, W.N., Lin, D., Cristianini, N., Sugnet, C.W., Furey, T.S., Ares, M., Jr., 
Haussler, D. (2000) Knowledge-based analysis of microarray gene expression data by using 
support vector machines. Proc. Natl. Acad. Sci. USA 97:262–267.  

Califano, A., Stolovitzky, G., Tu, Y. (1999) Analysis of gene expression microarrays for 
phenotype classification. Proceedings of the Eighth International Conference on Intelligent 
Systems for Molecular Biology, San Diego, August 19–23, pp. 75–85. 

24 



Cheng Li and Wing Hung Wong (2001a) Model-based analysis of oligonucleotide arrays: model 
validation, design issues and standard error application, Genome Biology 2(8): research0032.1-
0032.11. 

Cheng Li and Wing Hung Wong (2001b) Model-based analysis of oligonucleotide arrays: 
Expression index computation and outlier detection, Proc. Natl. Acad. Sci. Vol. 98, 31-36.  

Cheng, Y., Church, G.M. (2000) Biclustering of expression data. Proceedings of Intelligent 
Systems in Molecular Biology 2000, August 19–23, 2000, La Jolla, CA.  

Chiang et al. 2001. Compute genome-mean expression profiles from expression and sequence 
data.. Bioinformatics 17(S1), 49-55, 2001. 

Cho, R.J., Campbell, M.J., Winzeler, E.A., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, 
T.G., Gabrielian, A.E., Landsman, D., Lockhart, D.J., Davis, R.W. (1998) A genome-wide 
transcriptional analysis of the mitotic cell cycle. Mol. Cell 2:65–73. 

Duda, R.O., Hart, P.E., Stork, D.G. (2000) Pattern Classification, 2ed. John Wiley & Sons, Inc., 
New York, NY. 

Dudoit, S., Yang, Y. H, Speed, T.P., Callow, M.J. (2001) Statistical methods for identifying 
differentially expressed genes in replicated cDNA microarray experiments. Statistica Sinica (in 
press). 

Eisen, M., Spellman, P., Brown, P., Botstein, D. (1998) Cluster analysis and display of genome-
wide expression patterns. Proc. Natl. Acad. Sci. USA 95:14863–14868. 

Evgeniou T., Pontil, M., Poggio, T. (2000) Regularization networks and support vector machines. 
Advances in Computational Mathematics 13:1–50. 

Fisher, R. The Design of Experiments. 3ed. Oliver and Boyd Ltd. London. 1935. 

Friedman, J.H. (1994) An overview of computational learning and function approximation. In 
From Statistics to Neural Networks. Theory and Pattern Recognition Applications, Cherkassy, V., 
Friedman, J., Wechsler, H.W., eds. Springer-Verlag, New York. 

Fukunaga, K. (1990) Introduction to Statistical Pattern Recognition, 2ed. Academic Press, New 
York. 

Garber ME, Troyanskaya OG, Schluens K, Petersen S, Thaesler Z, Pacyna-Gengelbach M, van 
de Rijn M, Rosen GD, Perou CM, Whyte RI, Altman RB, Brown PO, Botstein D, Petersen I. 
Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci U S A. 2001 Nov 
20; 98(24): 13784-9. 

Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller H., Loh, 
M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S. (1999) Molecular 
classification of cancer: Class discovery and class prediction by gene expression monitoring. 
Science 286:531–537.  

Good, P. (1994) Permutation Tests: A Practical Guide to Resampling Methods for Testing 
Hypotheses. Springer-Verlag, New York. 

Hastie, T., Tibshirani, R., Botstein, D., Brown, P. (2001) Supervised harvesting of expression 
trees. Genome Biol. 2:1–12. 

25 



Hastie, T., Tibshirani, R., Eisen, M.B., Alizadeh, A., Levy, R., Staudt, L., Chan, W.C., Botstein, 
D., Brown, P. (2000) "Gene shaving" as a method for identifying distinct sets of genes with 
similar expression patterns. Genome Biol. 1:Research0003.1–0003.21. 

Huberty, C. J.“Applied Discriminant Analysis,” John Wiley and Sons Inc. (1994). 

Hunter, L.; Taylor, R. C.; Leach, S. M.; and Simon, R., GEST: A Gene Expression Search Tool 
Based on a Novel Bayesian Similarity Metric, Bioinformatics 17: 115S-122S (2001). 

Ideker, T., Thorsson, V., Siegel, A.F., Hood, L.E. (2000) Testing for differentially-expressed 
genes by maximum-likelihood analysis of microarray data. J. Comput. Biol. 7:805–817. 

Kearns M. J. and U. V. Vazirani, “An Introduction to Computational Learning Theory”, MIT Press. 
1997. 

Kerr A. and G. Churchill (2001a), Experimental design for gene expression microarrays, 
Biostatistics, 2:183-201 (2001). 

Kerr A. and G. Churchill (2001b), Statistical design and the analysis of gene expression 
microarrays, Genetical Research, 77:123-128, 2001. 

Kerr, Afshari, Bennett, Bushel, Martinez, Walker and Churchill (2001), Statistical analysis of a 
gene expression microarray experiment with replication, Statistica Sinica, to appear. 

Korn, Edward,  James F. Troendle, Lisa M. McShane, and Richard Simon. Controlling the 
number of false discoveries. Application to high-dimensional genomic data. NCI –DCTD-
003Technical report (http://linus.nci.nih.gov/~brb/TechReport.htm) 

Lazzeroni, L., Owen, A.B. (2000) Plaid models for gene expression data. http://www-
stat.stanford.edu/~owen/reports/plaid.pdf.  

Lee, M.T., Kuo, F., Whitmore, G.A., Sklar, J. (2000) Importance of replication in microarray gene 
expression studies: Statistical methods and evidence from repetitive cDNA hybridizations. Proc. 
Natl. Acad. Sci. USA 97:9834–9839. 

Lehman, E.C. (1986) Testing Statistical Hypothesis, 2ed. John Wiley & Sons, Inc., New York, 
NY. 

Lessnick, Stephen L, Caroline S. Dacwag, and Todd R. Golub. The Ewing's Sarcoma 
Oncoprotein EWS/FLI Induces a p53-Dependent Growth Arrest in Primary Human Fibroblasts. 
Cancer Cell 1, 393-401, 2001. 

Li S, Ross DT, Kadin ME, Brown PO, Wasik MA. Comparative genome-scale analysis of gene 
expression profiles in T cell lymphoma cells during malignant progression using a 
complementary DNA microarray. Am J Pathol. 2001 Apr; 158(4): 1231-7. 

Mardia, K.V., Kent, J.T., Bibby, J.M. (1979) Multivariate Analysis. Academic Press, London. 

Mukherjee, S., Tamayo, P., Slonim, D., Verri, A., Golub, T., Mesirov, J.P., Poggio, T. (1999) 
Support vector machine classification of microarray data. CBCL Paper #182 Artificial Intelligence 
Lab. Memo #1676, Massachusetts Institute of Technology, Cambridge, MA, December 1999. 

Newton, M.A., Kendziorski, C.M., Richmond, C.S., Blattner, F.R., Tsui, K.W. (2001) On 
differential variability of expression ratios: Improving statistical inference about gene expression 
changes from microarray data. J. Comput. Biol. 8:37–52. 

26 

http://linus.nci.nih.gov/~brb/TechReport.htm
http://www-stat.stanford.edu/~owen/reports/plaid.pdf
http://www-stat.stanford.edu/~owen/reports/plaid.pdf


Nielsen TO, West RB, Linn SC, Alter O, Knowling MA, O'Connell JX, Zhu S, Fero M, Sherlock G, 
Pollack JR, Brown PO, Botstein D, van de Rijn M. Molecular characterisation of soft tissue 
tumours: a gene expression study. Lancet. 2002 Apr 13; 359(9314): 1301-7. 

Perou, C.M., Jeffrey, S.S., van de Rijn, M., Rees, C.A., Eisen, M.B., Ross, D.T., 
Pergamenschikov, A., Williams, C.F., Zhu, S.X., Lee, J.C., Lashkari, D., Shalon, D., Brown, P.O., 
Botstein, D. (1999) Distinctive gene expression patterns in human mammary epithelial cells and 
breast cancers. Proc. Natl. Acad. Sci. USA 96:9212–9217. 

Perou, C.M., Sorlie, T., Eisen, M.B., van de Rijn, M., Jeffrey, S.S., Rees, C.A., Pollack, J.R., 
Ross, D.T., Johnsen, H., Akslen, L.A., Fluge, O., Pergamenschikov, A., Williams, C., Zhu, S.X., 
Lonning, P.E., Borresen-Dale, A.L., Brown, P.O., Botstein, D. (2000) Molecular portraits of 
human breast tumours. Nature 406:747–752. 

Pomeroy, S., Tamayo, P., Gaasenbeek, M., Sturla, L., Angelo, M., McLaughlin, M., Kim, J., 
Goumnerova, L., Black, P., Lau, C., Allen, J., Zagzag, D., Olson, J., Curran, T., Wetmore, C., 
Biegel, J., Poggio, T., Mukherjee, S., Rifkin, R., Califano, A., Stolovitzky, G., Louis, D., Mesirov, 
J., Lander, E., Golub, T. (2001) Gene expression-based classification and outcome prediction of 
central nervous system embryonal tumors. Nature, Vol 415, 24 (2002). 

Ramaswamy S, Osteen RT, Shulman LN (2001b). Metastatic Cancer from an Unknown Primary 
Site, in Lenhard RE, Osteen RT, Gansler T (eds): Clinical Oncology (ed1). Atlanta, GA, American 
Cancer Society, 2001, pp.711-719. 

Ramaswamy, S., Tamayo, P., Rifkin, R., Mukherjee, S., Yeang, C.-H., Angelo, M., Ladd, C., 
Reich, M., Latulippe, E., Mesirov, J.P., Poggio, T., Gerald, W., Loda, M., Lander, E.S., Golub, 
T.R. (2001a) Multiclass cancer diagnosis by using tumor gene expression signatures. Proc. Natl. 
Acad. Sci. USA 98: 15149-15154. 

Ripley B. D.. Pattern Recognition and Neural Networks, Cambridge: University Press (1996). 

Ross DT, Scherf U, Eisen MB, Perou CM, Rees C, Spellman P, Iyer V, Jeffrey SS, Van de Rijn 
M, Waltham M, Pergamenschikov A, Lee JC, Lashkari D, Shalon D, Myers TG, Weinstein JN, 
Botstein D, Brown PO. Systematic variation in gene expression patterns in human cancer cell 
lines. Nat Genet. 2000 Mar; 24(3): 227-35. 

Salzberg S. On comparing classifiers: A critique on current research and methods. Data Mining 
and Knowledge Discovery 1, 1-12, 1999. 

Scherf U, Ross DT, Waltham M, Smith LH, Lee JK, Tanabe L, Kohn KW, Reinhold WC, Myers 
TG, Andrews DT, Scudiero DA, Eisen MB, Sausville EA, Pommier Y, Botstein D, Brown PO, 
Weinstein JN. A gene expression database for the molecular pharmacology of cancer. 

Shipp, M., Ross, K., Tamayo, P., Weng, A., Kutok, J., Aguiar, R., Gaasenbeek, M., Angelo, M., 
Reich, M.,Pinkus, G., Ray, T., Koval, M., Last, K., Norton, A., Lister, T., Mesirov, J., Neuberg, D., 
Lander, E., Aster, J.,Golub, T. (2001) Diffuse large B-cell lymphoma outcome prediction by gene 
expression profiling and supervised machine learning. Nature Medicine January 2002 Volume 8 
Number 1 pp 68 – 74. 
Singh, Dinesh, Phillip G. Febbo, Kenneth Ross, Donald G. Jackson, Judith Manola, Christine 
Ladd, Pablo Tamayo, Andrew A. Renshaw, Anthony V. D'Amico, Jerome P. Richie, Eric S. 
Lander, Massimo Loda, Philip W. Kantoff, Todd R. Golub, William R. Sellers. Gene Expression 
Correlates of Clinical Prostate Cancer Behavior. Cancer Cell: March 2002, Vol. 1. 

27 



Slonim, D.K., Tamayo, P., Mesirov, J.P., Golub, T.R., Lander, E.S. (2000) Class prediction and 
discovery using gene expression data. In Proceedings of the Fourth Annual International 
Conference on Computational Molecular Biology (RECOMB) 2000. ACM Press, New York, pp. 
263–272.  
 
Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn 
M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lonning P, 
Borresen-Dale AL. Gene expression patterns of breast carcinomas distinguish tumor subclasses 
with clinical implications. Proc Natl Acad Sci U S A. 2001 Sep 11; 98(19): 10869-74. 
 
Su, A., Welsh, J.B., Sapinoso, L.M., Kern, S., Lapp, H. Dimitrov, P., Schultz, P.G., Powell, S., 
Moskaluck, C., Frierson, H.F. Jr. and Hampton, G.M. (2001). Molecular classification of human 
carcinomas using gene expression signatures. Cancer Research, 61, 7388-7393. 
 
Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Dmitrovsky, E., Lander, E.S., Golub, T.R. (1999) 
Interpreting gene expression with self-organizing maps: Methods and application to 
hematopoeitic differentiation. Proc. Natl. Acad. Sci. USA 96:2907–2912.  
 
The Chipping Forecast (1999) Special Supplement. Nature Genet. 21:January 1999. 
 
Tibshirani, Robert, Guenther Walther and Trevor Hastie. Estimating the number of clusters in a 
dataset via the Gap statistic" JRSSB 2000.  
Tseng George, Min-Kyu Oh, Lars Rohlin, James C Liao and Wing Hung Wong (2001) Issues in 
cDNA microarray analysis: quality filtering, channel normalization, models of variation and 
assessment of gene effects. Nucleic Acids Research, Vol. 29, No. 12. 2549-2557. 

Tusher, V.G., Tibshirani, R., Chu, G. (2001) Significance analysis of microarrays applied to the 
ionizing radiation response. Proc. Natl. Acad. Sci. USA 98:5116–5121. 

Vapnik, V.N. (1998) Statistical Learning Theory, John Wiley & Sons, Inc., New York. 

Welsh, J.B., Sapinoso, L.M., Kern, S., Wang-Rodriguez, J., Moskaluk, C., Frierson, H.F. Jr. and 
Hampton, G.M. (2001a) Analysis of gene expression identifies candidate molecular markers and 
pharmacologic targets in prostate cancer. Cancer Research, 61, 5974-5978. 

Welsh, J.B., Zarrinkar, P.P., Sapinoso, L.M., Kern, S.G., Behling, C.A., Burger, R.A., Monk, B.J. 
and Hampton, G.M. (2001b) Analysis of gene expression in normal and neoplastic ovarian tissue 
samples identifies candidate molecular markers of epithelial ovarian cancer. Proc. Natl. Acad. 
Sci. U.S.A., 98, 1176-1181. 

Westfall P. H.and S. S. Young. Resampling-Based Multiple Testing. John Wiley and Sons. Inc. 
1993. 

Weston, J. Mukherjee, S. Chapelle, O. Pontil, M. Poggio, T., Vapnik, V. Feature selection for 
SVMs. In Advances in Neural Information Processing Systems 13, Solla, S.A., Leen, T.K., 
Muller, K.M., eds., MIT Press, 2001. 

Yeang, C.H., Ramaswamy, S., Tamayo, P., Mukherjee, S., Rifkin, R.M., Angelo, M., Reich, M., 
Lander, E., Mesirov, J., Golub, T. (2001) Molecular classification of multiple tumor types. 
Bioinformatics 17(Suppl. 1):S316–S322. 

Yeoh, Eng-Juh, Mary E. Ross, Sheila A. Shurtleff, W. Kent Williams, Divyen Patel, Rami 
Mahfouz, Fred G. Behm, Susana C. Raimondi, Mary V. Relling, Anami Patel, Cheng Cheng, 

28 



29 

Dario Campana, Dawn Wilkins, Xiaodong Zhou, Jinyan Li, Huiqing Liu, Ching-Hon Pui, William 
E. Evans, Clayton Naeve, Limsoon Wong, & James R. Downing. Classification, subtype 
discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene 
expression profiling. Cancer Cell Vol 1(2) pgs 133-143, March 2002. 

Yeung, K.Y., Ruzzo, W.L. (2001) An empirical study on Principal Component Analysis for 
clustering gene expression data. http://citeseer.nj.nec.com/yeung01empirical.html. 

 

http://citeseer.nj.nec.com/yeung01empirical.html

	Cancer Genomics
	Basic Data Analysis
	Raw Data Quality Control
	Scaling
	Thresholding, Filtering, & Normalization

	Higher-Level Data Analysis: Unsupervised & Supervised Learning
	Unsupervised Learning: Clustering
	Supervised Learning: Prediction
	Selecting and Validating Gene Markers
	Permutation Tests
	Class Prediction
	Statistical Significance of a Supervised Classifier.
	Pairwise Classification: Classifying Leukemia Subtypes
	Predicting Treatment Outcome:  Lymphoma
	Multi-Class Classification: Classifying Multiple Tumor Types

	Dimensionality Reduction and Projection: Principal Components Analysis
	Conclusions and Analytical Challenges in Molecular Classification
	Acknowledgements
	References

